88 research outputs found

    DFT and BIST of a multichip module for high-energy physics experiments

    Get PDF
    Engineers at Politecnico di Torino designed a multichip module for high-energy physics experiments conducted on the Large Hadron Collider. An array of these MCMs handles multichannel data acquisition and signal processing. Testing the MCM from board to die level required a combination of DFT strategie

    A Self-Repairing Execution Unit for Microprogrammed Processors

    Get PDF
    Describes a processor which dynamically reconfigures its internal microcode to execute each instruction using only fault-free blocks from the execution unit. Working without redundant or spare computational blocks, this self-repair approach permits a graceful performance degradatio

    Automated Synthesis of SEU Tolerant Architectures from OO Descriptions

    Get PDF
    SEU faults are a well-known problem in aerospace environment but recently their relevance grew up also at ground level in commodity applications coupled, in this frame, with strong economic constraints in terms of costs reduction. On the other hand, latest hardware description languages and synthesis tools allow reducing the boundary between software and hardware domains making the high-level descriptions of hardware components very similar to software programs. Moving from these considerations, the present paper analyses the possibility of reusing Software Implemented Hardware Fault Tolerance (SIHFT) techniques, typically exploited in micro-processor based systems, to design SEU tolerant architectures. The main characteristics of SIHFT techniques have been examined as well as how they have to be modified to be compatible with the synthesis flow. A complete environment is provided to automate the design instrumentation using the proposed techniques, and to perform fault injection experiments both at behavioural and gate level. Preliminary results presented in this paper show the effectiveness of the approach in terms of reliability improvement and reduced design effort

    A High-level EDA Environment for the Automatic Insertion of HD-BIST Structures

    Get PDF
    This paper presents a High-Level EDA environment based on the Hierarchical Distributed BIST (HD-BIST), a flexible and reusable approach to solve BIST scheduling issues in System-on-Chip applications. HD-BIST allows activating and controlling different BISTed blocks at different levels of hierarchy, with a minimum overhead in terms of area and test time. Besides the hardware layer, the authors present the HD-BIST application layer, where a simple modeling language, and a prototypical EDA tool demonstrate the effectiveness of the automation of the HD-BIST insertion in the test strategy definition of a complex System-on-Chip

    An On-line BIST RAM Architecture with Self Repair Capabilities

    Get PDF
    The emerging field of self-repair computing is expected to have a major impact on deployable systems for space missions and defense applications, where high reliability, availability, and serviceability are needed. In this context, RAM (random access memories) are among the most critical components. This paper proposes a built-in self-repair (BISR) approach for RAM cores. The proposed design, introducing minimal and technology-dependent overheads, can detect and repair a wide range of memory faults including: stuck-at, coupling, and address faults. The test and repair capabilities are used on-line, and are completely transparent to the external user, who can use the memory without any change in the memory-access protocol. Using a fault-injection environment that can emulate the occurrence of faults inside the module, the effectiveness of the proposed architecture in terms of both fault detection and repairing capability was verified. Memories of various sizes have been considered to evaluate the area-overhead introduced by this proposed architectur

    Exploiting clustering algorithms in a multiple-level fashion: A comparative study in the medical care scenario

    Get PDF
    Clustering real-world data is a challenging task, since many real-data collections are characterized by an inherent sparseness and variable distribution. An appealing domain that generates such data collections is the medical care scenario where collected data include a large cardinality of patient records and a variety of medical treatments usually adopted for a given disease pathology. This paper proposes a two-phase data mining methodology to iteratively analyze dierent dataset portions and locally identify groups of objects with common properties. Discovered cohesive clusters are then analyzed using sequential patterns to characterize temporal relationships among data features. To support an automatic classication of a new data objects within one of the discovered groups, a classication model is created starting from the computed cluster set. A mobile application has been also designed and developed to visualize and update data under analysis as well as categorizing new unlabeled records. A comparative study has been conducted on real datasets in the medical care scenario using diverse clustering algorithms. Results were compared in terms of cluster quality, execution time, classication performance and discovered sequential patterns. The experimental evaluation showed the eectiveness of MLC to discover interesting knowledge items and to easily exploit them through a mobile application. Results have been also discussed from a medical perspective

    On applying the set covering model to reseeding

    Get PDF
    The Functional BIST approach is a rather new BIST technique based on exploiting embedded system functionality to generate deterministic test patterns during BIST. The approach takes advantages of two well-known testing techniques, the arithmetic BIST approach and the reseeding method. The main contribution of the present paper consists in formulating the problem of an optimal reseeding computation as an instance of the set covering problem. The proposed approach guarantees high flexibility, is applicable to different functional modules, and, in general, provides a more efficient test set encoding then previous techniques. In addition, the approach shorts the computation time and allows to better exploiting the tradeoff between area overhead and global test length as well as to deal with larger circuits

    Testing Embedded Memories in Telecommunication Systems

    Get PDF
    Extensive system testing is mandatory nowadays to achieve high product quality. Telecommunication systems are particularly sensitive to such a requirement; to maintain market competitiveness, manufacturers need to combine reduced costs, shorter life cycles, advanced technologies, and high quality. Moreover, strict reliability constraints usually impose very low fault latencies and a high degree of fault detection for both permanent and transient faults. This article analyzes major problems related to testing complex telecommunication systems, with particular emphasis on their memory modules, often so critical from the reliability point of view. In particular, advanced BIST-based solutions are analyzed, and two significant industrial case studies presente

    Online and Offline BIST in IP-Core Design

    Get PDF
    This article presents an online and offline built-in self-test architecture implemented as an SRAM intellectual-property core for telecommunication applications. The architecture combines fault-latency reduction, code-based fault detection, and architecture-based fault avoidance to meet reliability constraint
    corecore